Final DAL Release of Data-flow kernels, Distributed Plastic polychronous Spiking Neural Net and LQCD
نویسندگان
چکیده
منابع مشابه
Distributed simulation of polychronous and plastic spiking neural networks: strong and weak scaling of a representative mini-application benchmark executed on a small-scale commodity cluster
We introduce a natively distributed mini-application benchmark representative of plastic spiking neural network simulators. It can be used to measure performances of existing computing platforms and to drive the development of future parallel/distributed computing systems dedicated to the simulation of plastic spiking networks. The mini-application is designed to generate spiking behaviors and ...
متن کاملEURETILE D7.3 - Dynamic DAL benchmark coding, measurements on MPI version of DPSNN-STDP (distributed plastic spiking neural net) and improvements to other DAL codes
The EURETILE project required the selection and coding of a set of dedicated benchmarks. The project is about the software and hardware architecture of future many-tile distributed fault-tolerant systems. We focus on dynamic workloads characterised by heavy numerical processing requirements. The ambition is to identify common techniques that could be applied to both the Embedded Systems and HPC...
متن کاملAn efficient method for online detection of polychronous patterns in spiking neural networks
Polychronous neural groups are effective structures for the recognition of precise spike-timing patterns but the detection method is an inefficient multi-stage brute force process that works off-line on pre-recorded simulation data. This work presents a new model of polychronous patterns that can capture precise sequences of spikes directly in the neural simulation. In this scheme, each neuron ...
متن کاملFinancial Time Series Prediction Using Spiking Neural Networks
In this paper a novel application of a particular type of spiking neural network, a Polychronous Spiking Network, was used for financial time series prediction. It is argued that the inherent temporal capabilities of this type of network are suited to non-stationary data such as this. The performance of the spiking neural network was benchmarked against three systems: two "traditional", rate-en...
متن کاملA Spiking Neural Network for Financial Prediction
In this paper a Polychronous Spiking Network was applied to financial time series prediction with the aim of exploiting the inherent temporal capabilities of the spiking neural model. The performance of this network was benchmarked against two “traditional”, rate-encoded, neural networks; a Multi-Layer Perceptron network and a Functional Link Neural Network. Three non-stationary datasets were u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014